Search results for " high-fat diet"

showing 3 items of 3 documents

Impact of diet-induced obesity on the mouse brain phosphoproteome

2018

Obesity is closely associated to several diseases such as type 2 diabetes, cardiovascular disease, hepatic steatosis, airway disease, neurodegeneration, biliary diseases and certain cancers. It is, therefore, of importance to assess the role of nutrition in disease prevention as well as its effect in the course of such pathologies. In the present study, we addressed the impact of the exposure to different obesogenic diets in the mice brains phosphoproteome. To analyze if the obesity could be able to modify the protein pattern expression of brain neurons, obesity was induced in two different groups of mice. One group of mice was fed with hyperglycemic diet (HGD) and the other one was fed wit…

Male0301 basic medicinemedicine.medical_specialtyPhosphoproteomicsEndocrinology Diabetes and MetabolismClinical BiochemistryHyperglycemic dietType 2 diabetesDiseaseBiologyDiet High-FatBiochemistry03 medical and health sciences0302 clinical medicineInternal medicinemedicineAnimalsProtein phosphorylationObesityPhosphorylationMolecular BiologyGSK3BNutritionNeuronal impairmentNutrition and DieteticsNeurodegenerationta1182BrainObesity; Nutrition; High-fat diet; Hyperglycemic diet; Neuronal impairment; PhosphoproteomicsPhosphoproteinsmedicine.diseaseObesityMice Inbred C57BLHigh-fat dietGene Ontology030104 developmental biologyEndocrinologyHyperglycemiaPhosphorylationCalcium ChannelsSteatosis030217 neurology & neurosurgeryThe Journal of Nutritional Biochemistry
researchProduct

3,5-DIIODO-L-THYRONINE-INDUCED MODIFICATION IN PITUITARY-THYROID AXIS IN RATS FED HIGH-FAT DIET. A PRELIMINARY REPORT

2014

Experimental observations highlight that the administration of 3,5-diiodo-L-thyronine (T2) may decrease the body weight and the plasma levels of cholesterol and triglycerides and may prevent the onset of hepatic steatosis in rats fed diets rich in lipids (HFD). On the basis of these findings we have carried out some in vivo studies to evaluate the effects of increased levels of T2 on pituitary thyroid axis function in HFD rats. Fifteeen Wistar male rats were divided in 3 groups. The first group (N) was fed with a standard diet. The second group (G) was fed with a diet high in fat (HDF), while the third group (GT2) was additionally administered intraperitoneally with T2 (70 ug/100g body weig…

35-DIIODO-L-THYRONINE HIGH-FAT DIETSettore BIO/09 - Fisiologia
researchProduct

The LepR-mediated leptin transport across brain barriers controls food reward

2018

Objective Leptin is a key hormone in the control of appetite and body weight. Predominantly produced by white adipose tissue, it acts on the brain to inhibit homeostatic feeding and food reward. Leptin has free access to circumventricular organs, such as the median eminence, but entry into other brain centers is restricted by the blood–brain and blood–CSF barriers. So far, it is unknown for which of its central effects leptin has to penetrate brain barriers. In addition, the mechanisms mediating the transport across barriers are unclear although high expression in brain barriers suggests an important role of the leptin receptor (LepR). Methods We selectively deleted LepR in brain endothelia…

Male0301 basic medicineLeptinHFD high-fat dietEndothelial cellsWhite adipose tissueCSF cerebrospinal fluidMice0302 clinical medicineCPP conditioned place preferenceBBB blood–brain barrierCells Culturedmedia_commonLeptindigestive oral and skin physiologyi.p. intraperitonealmedicine.anatomical_structureLepRBlood-Brain BarrierBlood–brain barrier; Endothelial cells; LepR; Leptin; Obesity; RewardMedian eminenceqPCR quantitative polymerase chain reactionReceptors LeptinOriginal ArticleChoroid plexusmedicine.medical_specialtylcsh:Internal medicinemedia_common.quotation_subjectHyperphagiaBiologyBlood–brain barrierVTA ventral tegmental areaBC bottle choice testCapillary PermeabilityBlood–brain barrierARC arcuate nucleus03 medical and health sciencesPBS phosphate buffered salineRewardInternal medicinemedicineAnimalsObesitylcsh:RC31-1245Molecular BiologyCircumventricular organsBlood-Nerve BarrierLeptin receptorNCD normal chow dietAppetiteCell Biology030104 developmental biologyEndocrinologyLepR leptin receptorChoroid PlexusBSA bovine serum albuminPFA paraformaldehyde030217 neurology & neurosurgeryDAPI 4′6-diamidino-2-phenylindoleMolecular Metabolism
researchProduct